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Use of chaotic excitation and attractor property analysis in structural health monitoring
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This work explores the utility of attractor-based approaches in the field of vibration-based structural health
monitoring. The technique utilizes the unique properties of chaotic signals by driving the structure directly with
the output of a chaotic oscillator. Using the Kaplan-Yorke conjecture, the Lyapunov exponents of the driving
signal may be tuned to the dominant eigenvalues of the structure, thus controlling the dimension of the
structural response. Data are collected at various stages of structural degradation and a simple nonlinear model,
constructed from the undamaged data, is used to make predictions for the damaged response data. Prediction
error is then introduced as a “feature” for classifying the magnitude of the damage. Results are presented for
an experimental cantilevered beam instrumented with fiber-optic strain sensors.
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[. INTRODUCTION attractor-based metrics exist for the purpose of making quan-
titative statements about the underlying dynamical process,
The field of structural health monitoringSHM) is con-  e.g., correlation dimensiof5], Lyapunov spectrum6],
cerned with accurately monitoring the integrity of structures false-nearest neighbof§], and certain prediction schemes
both civil and military, in an effort to reduce ownership [8] are widely used. . o
costs, improve operational lifetime, and most importantly, ~The approach used here is a variation of the mgthod used
protect human life. Because the dominant mode of failure i$n Ref.[9] for examining nonstationarity in time-series data.
often catastrophic, the associated economic and health cost§e idea is to use data taken from the undamaged “pristine”
are typically very high. One of the more common approaches§tructure to reconstruct reference, or base line, attractors.
to the problem is vibration-based SHM, a procedure wherebyhese data are to be compared to data collected from the
the structure in question is excited and the dynamical restructure as damage is incurred. By using a simple prediction
sponse observed for changes in “features” that are indicativécheme, points on the “damaged” attractors are forecast us-
of damage. The assumption here is that damage will manife$fd the base line data as a model. Higher levels of damage
itself as a change in the dynamical properties of the structura¥ill alter the structure’s dynamic response, causing these
response so that by quantifying these changes, the practiti®ase line models to lose their ability to make predictions.
ner may detect, locate, or even diagnose the type of the dankrediction error then becomes a good feature for quantifying
age. A vast majority of the literature considers features deboth the presence and the magnitude of structural degrada-
rived from a modal analysis of the structure, e.g., resonarfion. The effectiveness of the approach is demonstrated on
frequencies, mode shapes, mode curvature, modal dampir@(perimental datg taken from a c_a_ntllevered k_)eam where the
flexibility, etc. Good summaries of previously proposed fea-l€vel of damage is known, quantified by varying the clamp-
tures, their application, and their effectiveness may be foundnd strength at the fixed end.
in Refs.[1] and[2].
Recently, progress has been made by using chaotic exci- Il. METHODOLOGY
tation signals and attractor analysis to detect damage in
structureq 3,4]. This approach is fundamentally new in that
the steady-state dynamics of the structure are considered, Traditional vibration analysis involves exciting the struc-
rather than the transient dynamic properties associated withtare with broadband random signals. The broadband nature
modal analysis. We will show in this work that a chaotic of noise ensures a full modal response, ideal for frequency
wave form may be tailored to yield a structural responsedomain approaches to system identification or feature extrac-
which is low dimensional, regardless of the number of detion. Chaotic signals also tend to possess broadband fre-
grees of freedom in the structure. The effect of damage is tquency spectra; however, unlike noise, chaos is determinis-
alter the dynamics of the response, giving rise to differentic. In fact many chaotic systems can be as low as three
response attractors. Any algorithm that can accurately quartimensional when described as a continuous time process.
tify these differences in the presence of uncertaistych as  This determinism, coupled with the fractal nature of chaotic
due to nonstationary environmental fluctuatiphecomes a  attractors, gives rise to a low-dimensional “spread” of tra-
valid method for detecting structural damage. A variety ofjectories that allow for attractor-based classification. Periodic
orbits, for example, adhere to well-defined paths and will
produce one-dimensional attractors, regardless of damage
*Email address: pele@ccs.nrl.navy.mil level. In addition, a chaotic system is defined by a positive

A. Chaotic interrogation
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Lyapunov exponent implying extreme sensitivity to small )\S cou=1,...0d;
changes in system parameters. The subtlety of damage in- L.
duced changes to a structure further motivates this choice as Aygotov=ld
the mechanism of excitation. s s S
The difficulty in applying attractor-based methods to ex- A== >N +dy) ()
perimental systems is usually tied to the dimensionality of
the process. High-dimensiondD &4) systems tend to pro- where the )\S are the exponents associated with the
duce poor results when an attractor-based analysis is useld-dimensional forcing and th)sel'; are the exponents of the
due to an inability to sufficiently populate the attractor. Thed,-dimensional filter. Regardless of the number of degrees of
proposed method takes advantage of the Kaplan-Yorke corireedom associated with the filter, the fractal dimension of
jecture in order to produce low-dimensional response thughe entire system is controlled by Ed). It should be noted
allowing for the standard tools of nonlinear time-seriesthat in order for these statements to be true the coupling
analysis to be successfully employed. The Kaplan-Yorkeébetween the forcing and the structumaustbe monodirec-
conjecture[10] relates the Lyapunov exponenisEs) of a  tional. Any feedback from the structure which affects the
system to the dimension of that system via dynamics of the forcing, could result in fundamentally dif-
ferent dynamics through bifurcation.

:)\%,

1 B. Tuned chaos

: D

Damage to the system will result in changes to the eigen-
structure of A. This in turn will alter the structure’s
whereK is the number of exponents that may be added betyapunov spectrum, which, for a linear system, consists of
fore the sum becomes negative, thg are the LEs, an®_  the real parts of the eigenvaluesAf Changing the.; may
is the Lyapunov dimension. This relationship is important forthys alter the dimension of the filtered signal. Therefore, de-
two specific reasons. First, it implies that by adjusting thetecting changes in dimensionality becomes a valid candidate
LEs the dimensionality of the system’s response may be effor detecting any type of damage that serves to alter the
fectively controlled. Second, it states thably the most ejgenvalues of a structure. Two criteria must be met, how-
weakly contractingstate space directions play a role in the ever, in order for this approach to work. First, the Lyapunov
dimensionality of the process. All negative exponents greatespectrum of the oscillator must overlap that of the structure.
in magnitude than\y ., are effectively filtered out of the This ensures that changes to the LEs of the structure, i.e., by
dynamics. The state-space directions associated with theggamage, will alter the dimension of the filtered signal. The
exponents are contracting too quickly to be seen. degreeof overlap,d,, determines the extent to which the

Consider a simple lineaN-degree-of-freedom structure structure’s dynamics are excited or, alternatively, the number
forced with the output of a separate dynamical process govof dimensions the structure is adding to the phase space.

erned by the functiorfr. Second, the dominant exponent associated with the oscillator
must be minimized for a given degree of overlap in order to
z=F(z) maintain the lowest possible dimensionality. Considering Eq.
(3), these criteria become
x=Ax(t)+Bz(t). (2 |)\C|>|)\L |
d; do

The coordinatex are N vectors that can be any dynamic d, dy-1

measurablégstrain, displacement, ejc.depending on how L c L

the constant coefficient matri is formed. This matrix con- mE:l N> [Nl > mZ’l Am- @
tains all of the mass, stiffness, and damping properties

present in the structure. Forcing for the system is provided he interaction between chaotic and structural LEsdgr
by the inputBz(t) where the matrixB selects both the com- =1 is depicted in Fig. 1. If the above criteria are met, and
ponent ofz(t) to be used for the forcing and the structural the forcing is restricted to the output of a continuous time
locatior(s) (at which coordinatex) where the forcing is to  process X5=0.0), the dimension of the filtered chaotic sig-
be applied. A one-degree-of-freedom version of this sameal will be

system was studied in Rdfl1] by Pecora and Carroll where

the forcing was taken to be the output of a chaotic oscillator. c do 1 L

The goal of that work was to illustrate how controlling the A+ mz_:l Am

LEs of a linear time-invariant filter could lead to a response D =1+d,+ L_ , do>0. (5

with varying dimension via Kaplan-Yorke conjecture. Here |)\d0|

we have extended the concept to a multiple-degree-of-

freedom filter, represented here by the structiire The result of an appropriately tuned chaos and structure sys-

Returning to Eq.(2), both the structure and the forcing tem is therefore a response that is low dimensional, and one
will each contain their own sets of LEs so that the completavhose dynamics will be fundamentally changed by the oc-
spectrum for the filtered chaotic signglt) is given by currence of damage to the structure. The focus is therefore
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on finding a feature that can accurately quantify differencesvith embedding dimensioM and time delayT, where we
in the dynamical attractors produced by the system at variousave adopted the boldface now to indicate itieattractor
stages of structural degradation. rather than theéth time series in the dataskt Similarly, any
subsequenfdamagegidatasely will yield N, attractors, with
each one denoteg (n). The method proceeds by selecting
the ith base line attractox;(n) from X and thejth “test”

In this paper we explore the use of prediction error as attractory;(n) from Y. Given a randomly selected fiducial
feature in quantifying the level of structural degradation.trajectory(point) at time indexf on y;(n), or y;(f), the al-
Suppose thal, independent time seriedN( independent gorithm selects a corresponding set or “neighborhood” of all
experiments, or runsare recorded. Recordinly, such re- the points on the base line attractan) that are within
sponses allows for the inclusion of ambient variation in thesome radiuse of the randomly selected fiducial point. This
set of data. Such variation is known to occur in practice ang€t may be explicitly defined as
must be accounted for if damage-induced changes are to be

Ill. PREDICTION ERROR AS A FEATURE

distinguished from those due to environmental factors. We US v (FD) =x(0): |1 (D)= v (£)]|< 7

will represent this base line set &, time series asX <01 =xi(P:Ibi(P) —ys(Dl <e. @
={x1(n).xa(n), ... xy (n)},  where  each x(n),i

=1,2,...N,, isavectoroh=1, ... N discretely sampled The time indexp associated with;(n) is completely arbi-

values of undamaged structural response. Similarly, at sorgay, and it does not necessarily have any correlation to the
later time, when the structure is presumed to be damagedme indexf, since this neighborhood is constructed purely
relative to the condition when the S¥twas collected, a new from geometr!((_: considerations. The idea is to describe the
set of dataY={y;(n),y,(n), ... ,er(n)} are collected in evolution of U (y;(f)) and to use this description as a pre-
the same wayi.e., N, independent runs withl discrete time dictor for how the data should evolve in time. The p[edlcted
samples in each time serje3he object of the feature-based value fory;(f) ats time steps into the future, denoteg( f
damage assessment is to extract some metric capable of diss), then becomes
criminating between the base lifiendamagedsetX and any
future (damageyl datasetY. Here, the base line data s¢fis
used to empirically generate an attractor-based model of the g,j(er )
pristine structure’s dynamics. These models are then used to
make predictions for any subsequent damaged daYaJéte
resultingnonlinear cross-prediction errobecomes an excel-
lent candidate for a feature. As the structural dynamics isvhere the quantityuf(yj(f)ﬂ simply denotes the number
altered, the expected value of the cross-prediction error wilbf points in the neighborhood. In this formulation, then, the
increase. The strength of the approach is that it directly adpredicted value is simply the average of predicted values for
dresses the question of interesHas the dynamical re- the neighborhood. In this sense the base line attractors are
sponse of the structure been altered due to damage?” used as “look-up” tables that contain the various patterns
The algorithm used here is adopted from Schrel8r  present in the data. The working hypothesis is that these
where it was used to detect nonstationarity in time-seriesables will lose their ability to serve as an accurate database
data. A simple attractor-based prediction scheme is used afs the dynamics is altered by damage. The prediction horizon
the undamaged data to forecast the values of the damagedyill depend on the rate at which the data are acquired and
data some number of time stepinto the future. Using the the specific application. For health monitoring purposes, as-
familiar delay coordinate approa¢h?], each of theN, base  suming reasonably sampled data 1 will suffice. While
line time series inX may be used to construct a correspond-more complicated prediction schemes exist, this is among the

=— > x(p+s), (8
IEP\ZIRR)] PR ES

ing base lineattractor simplest models one can use to quantify the evolution of the
dynamics. Since we only seek to distinguish one attractor
x(N)=[x(n),x(n+T), ... xi("h+[M—1]T)], from another, the quality of predictions is of diminished im-

portance and the simplest, most computationally efficient
_ scheme is considered optimal. Variations of this algorithm
i=1,...N, (6)  have been used for prediction and data cleangnig].
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Once the predictions have been made, the average predieters of interest are thieeatmentswhich refers to the quan-
tion error between théth base line attractor and théh test ity (or quantities assumed to be changing between datasets,
attractor at one time step in the future may be defined by and theresponseswhich are the measured or computed data
to be analyzed. In this work, the driving influence of the
1 A 5 difference among datasets is assumed to be due to damage
YiiTN 21 Lyj(f+1)—y(F+1)]% © progress in the structure, and thus only a single-factor treat-
ment is considereD ANOVA). Different amounts of dam-
where the average is taken over Mlpoints on the attractor. age are known as treatmelevels If the data population
In practice, such a large summation is often time consumingnean of thekth treatment is denoted,, the following null
and a good estimate of the average may be obtained Hyypothesis may be established:
evaluating Eq(9) over some randomly selected subseNof
This error quantity is then normalized by the variaride- Ho:pk= tk+ 1, (11
notedoiz) of theith base line attractor to yield theormal-
ized average cross-prediction error

N

wherek=1, ... Ny, andNy is the number of different dam-
age levels (treatments being considered. The implied
- complementary alternative hypothesis is thus that in at least

: .:ﬁ_ (10) one pairwise comparison, the means differ. Acceptant¢e,of
Yilj 2 S - . .

T indicates that no distinguishable difference among data sets

) o . may be inferred, and thus no damage to the structure has
This computation is performed for each of the base line ( gceurred. Specific details regarding how a 1D ANOVA pro-

=1...N,) and damagedj&1, ... N) attractors for ali  cedure is completed may be found in any basic statistical
<j such that the total feature set hds,=N,(N;—1)/2  methods text, e.g., Ref14].
members. Excluding duplicate pairings, 9-311,,23’2,1, was Traditional ANOVA considers single inferences for each

done so that each of the resultiig, members of'\yi’j may M4j by Qstablishing confidence intervals. If.th(_a parenfc data
be treated as independent random variables. Similar indiceBopulations are assumed to be normally distributed, it may
e.q., 3’1,1,3’2,2 are also excluded from consideration. The € shown that the 100(1a)% confidence interval about the

variation the method seeks to capture is occurring from ruffifference between two meapg and w, may be given by

to run so that adding similar pairs serves no purpose other 1 1

than to potentially bias the data. Finally, taato prediction 14— 1= (K= Xi) £t /EMS(_+ =1, 12
error is computed for the base line attractor by replacing np N

y;(f) with x(f) in Eq. (7). The resulting set/; (whereA EE

denotes “auto) gives some idea of the prediction error one WNereX; andX, are the means of the two measured datasets,
would expect to find in the instance when the dynamics ar&ws IS the global mean-squared error as obtained from the
not changing. This entire process is then repeated for an§NOVA proceduren; andn, are the number of data obser-
subsequent data s¥tobtained from the structure over time. Vations in each set, ar, is the student-test statistic at

If the practitioner collects\y datasets over time, then each confidence leve/2. _ _ L

5/”_ dataset, now denotea!fj Kk=1,... Ng, describes the The interval constructed in E@L2) is deficient in one key

. . . way: each pairwise inference applies individually, and the
error generated by using the base line data to predict hoW1ethod cannot be used to draw a family of inferences among

subsequent datasets should evolve. It is expected that Q3veral datasets. The deficiency may be alleviated by either

dgmage-mduced dynamics of the structure change, this err%ronstructing wider intervals, meaning less precise estimates,
will grow to reflect the change.

or reducing the confidence level. One popular method for
properly estimating pairwise differences is the Bonferroni
IV. STATISTICAL CONSIDERATIONS method. The method requires that the number of pairwise

Although the prediction error features presented above argomparisons to be made be specifeegriori. The Bonfer-
computed in a deterministic manner, there exist severdPNi interval estimates are still given by E(L2), but the
sources of variability which add elements of stochastic beStudentt test statistic is modified fror, ;— 1,29, Whereq
havior to any real data. Measurement noise, unaccounted the number of pairwise estimates to beNconS|deredNaor
variables, environmental fluctuatioonstationarity, and  treatments (damage leve)s there are C,%=Ngy!/2!/(Nq
other sources cause the data to poputhseributionsrather ~ —2)! total pairs that may be considered. One advantage of
than reflect exact repeatability. Thus, the damage diagnostbe Bonferroni method, however, is that not all these pairs
problem is transformed into distinguishing among variousneed to be considered. The final decision whether to accept
distributions of data regarding their proper classification a®r rejectH, depends on whether the intervals constructed by
coming from a damaged structure or not. The practitionethe modified Eq(12) contain zero or not; intervals that con-
seeks to make a confidence-based, quantitative engineeritgn zero indicate an acceptanceH, and intervals that do
judgment in this capacity so that proper corrective actiomot contain zero indicate rejection Hify, i.e., the two means
may be taken. are significantly different.

A useful procedure for comparing datasets is the analysis Two important assumptions are inherent in using the
of variance(ANOVA). In an ANOVA procedure, the param- ANOVA procedure as detailed above. First, it must be known
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in some sense how many levels of déta., damage levels  ia)
are contained within all the datasets. This may be thought of

-

= data distribution
assupervised learningwhere a controlled damage study is & i
being performed such that known discrete levels of damage 2, i ;
(even if they are not quantifiable as sueie observed. Sec- £ S00  power confidence limit upper confidence Bmit
ond, the confidence intervals constructed by the modified Eq & T ;
(12) rely upon the assumption that the parent data distribu- £ . :
tions from which the measured data are sampled are norme 0,009 0.011 0,013
(Gaussiah This second assumption is usually acceptable, prediction error
provided that the data are not significantly skewed or multi- (w}
modal. Even if the parent distributions are skewed or multi- data
modal, recourse may be made to the central limit theorem by & 0.013 S:.n'd_,:'::rnu limits
applying some sort of subsampling, resampling, or bootstrap- 5
ping technique[15]. The general procedure in these tech- g F ------------------------------------------------
niques is to take large numbers of randomly sampled subset 2 *11 I}i I {1y ‘.’,u”fhl'f W[ i 1|||i| il .r'l i ?h“
of the collected data, take the subset mean, and use the cog l.'.. ...................... 1 ....... 1 ...... L'I ..........
lection of resampled means as the “new” dataset. This pro-  .pg9
cedure was implemented on the data taken in this work, anc 0 200 400 GO0 8§00 1000
it will be shown later that strongly Gaussian distributions of sample number
data resulted. ©) -

The first assumption poses a more difficult challenge. In a = §bi3 outlier
o === ponfidence Nmits

practical situation, true supervised learning is quite rare, as
observations of data from many “known” damage levels are g A
usually unavailable. Without this information, a proper quan- £ @11

titativeyANOVA is impossible. One useful procepdufe ir?this % J I|II |1‘|'“|F'Hﬂll1'li' J‘1|'rh|| b “I'T"'inqul HML ”"’"-' |
instance is the use dftatistical process contrplsometimes £

known asnoveltyor outlier detection 16—-18. Here, data are i 0 200 400 600 800 1000
collected from some base line state of the system, confidenc
limits are determined by standard mean-based hypothesis
testing, and any future data are compared to these confidence FIG. 2. Statistical process contrdl) probability density esti-
limits. Data that fall within the confidence limits are assumedmation and typical confidence limits for base line data); data

to come from the same population as the base line dataeflecting the distribution iria); (c) new data showing an increased
while data outside the limits, called “outliers,” are used asoutlier count possibly indicative of damage.

an indicator of “other” data. As damage occurs in the struc-

ture, it is reasonable to postulate, then, that the number ahickness oft=3.175<10 3 m. Springs were placed be-
outliers would increase. This procedure is illustrated in Figtween the clamping stage and the clamping bolts so that the
2. Base line data are obtained, and a certain confidence igamping strength could be varied. This provided a con-
assigned to the resulting distribution, as in paiael The raw  trolled mechanism by which the structure may be “dam-
data are shown in panéb) with the upper and lower confi- aged.” Seven fiber-optic strain sensdbgsed on fiber Bragg
dence limits drawn in. Some of the data fall outside the |im-gratingg were evenly spaced along the central axis of the
its, since it is never possible to obtain all the real parenbeam[19] and an accelerometer was attached to the forcing
population data. With proper determination of the confidencénechanism in order to record the excitation. The entire setup
limits from usual hypothesis testing, the outlier fractionis shown in Fig. 3. The shaker is a M.B. Dynamics “Modal
should equal the balance of the confidence limit from 100%50” attached to the base by a shaft fixed in place by set
in other words, for a confidence limit of 95%, the base linescrews. It was determined experimentally that the first two
data should have about 5% of the data appearing as an outges of the beam were

lier. Then, as new data are obtained, they are compared to the

--|--_—':---|------------- ———— o - -|----r--

sample number

base line confidence limits, and outliers are counted. The N~—7,

dataset in Fig. @), for example, shows a significant increase

in the number of outliers observed. The outlier count could Ao~ —11 (13)
. . . . . 2 .

be trended over time to obtain a semiquantitative measure of

degradation.

These estimates were obtained by exciting the structure with
white noise, measuring the response, and implementing a
V. EXPERIMENT SETUP version of the eigensystem realization algoritkera) [20]
in order to estimate the structure’s state ma&ixThe eigen-
The system under study is a cantilevered aluminum beanyalues of this matrix were extracted and the real part was
clamped at the fixed end by four clamping bolts threadedetained as the structure’s Lyapunov exponents. Due to the
into an aluminum clamping stage. The beam itself had dimits of the excitation mechanism and the uncertainty asso-
length of 5.00x 10! m, a width of 5.00K10 2 m, and a  ciated with theera algorithm, the quantitie13) should be
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b
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0 1 2 3 4
time (s)
clamping FIG. 4. Driving Lorenz wave form.

. bolts
clamping

springs tially providing a means by which the higher-order structural
coordinategdimensiong are filtered out of the dynamics.

For this structure, two different forcing scenarios were
considered. For the first, thewere each set to 0.8, giving a
complete spectrum dt,ln=(1.10,0.00,— 17.90) so that only
one LE of the structure was overlapped by those of the driv-
‘:( ]:' ing signal @,=1). The dimension of the response in this

case is theorized to bB ~2.2. In the second case the de-
gree of overlap stayed the same, but the oscillator was sped
up by requiring that each of the=1.8 yielding a spectrum
of \2=(2.47,0.00;-40.27) and a dimension db, ~2.4.
For each of these cases, the driving signals were generated
using a fourth-order Runge-Kutta algorithm. LabVIEW data
acquisition software was then used to convert the data files to
the voltage that was output to the shaker controller. A sample
of the driving wave form is shown in Fig. 4. Damage was
esl,imulated on the beam by loosening the compression on the
springs holding the clamp. Under a fully clampachdam-
aged condition, all four springs were compressed to 1.18
cm, and three damage levels were produced by relaxing the
springs to 1.40 cngdamage level )1 1.95 cm(damage level
2), and 2.50 cm(damage level B Displacements were pre-

accelerometer

{ beam

shaker

FIG. 3. Experimental setup.

regarded as rough approximations. Different forms of exci
tation and different algorithms may produce varying results
This is a consequence of some well-known difficulties in
obtaining reliable estimates of negative LEX]. However,
since the method only requires approximate values in ord
to be effective, this poses no limitation.

Excitation was chosen as the first state variabjeyf the
chaotic Lorenz oscillator,

€2,=1602,~2), cision controlled with a micrometer. As the springs were
lengthened, the elastic force imparted on the clamp de-
6'22:4021_22_2123_ creased, simulating the relaxation of a bolted connection due
to fastener degradation.
6.23: - 4Z3+ 2122 y (14)
VI. RESULTS
X=Ax+Bz, (15 This experiment yieldetl, = 12 runs for eaciNy=4 (one

undamaged and three damapgscdenarios with each run con-
where the tuning parameteris used to speed up or slow sjsting of N=45 000 points, sampled at 2 kHz. Final values
down the oscillator, depending on the LEs of the structurefor the average prediction error were obtained by evaluating
The matrixB of Eq. (2) incorporatesz;,z; due to the fact Eg. (9) over 5000 randomly selected trajectorfeIhe sets
that the excitation is applied as base motias opposed to a of prediction error therefore consist Nf,,=66 values which
point force. One obvious difference between the mo@l  were then resampled with the means of 20-element random
and the experiment is the number of coordinates required teubsets to generate a 10 000-sample data set. Probability den-
describe the structure. Numerically such problems are dissity functions of the resampled data using a kernel density
cretized to some finite, usually small, number of degrees oéstimation techniqug22] with a Gaussian kernel are shown
freedom, while the actual beam contains an infinite numbem Fig. 5 for both the slowa) and fast(b) forcing cases. It is
of degrees of freedom. In a practical sense this does not postear from the figure that increased levels of damage lead to
a problem as the time scalésr alternatively, LEsbecome a different set of dynamics and hence a higher prediction
very small(very negativée for only a few state-space coordi- error. The distributions at all damage levels in both excitation
nates of the structure. The Kaplan-Yorke conjecture is esseftime scales appear strongly Gaussian. To the naked eye, all

016209-6



USE OF CHAOTIC EXCITATION AND ATTRACT(R.. .. PHYSICAL REVIEW E 67, 016209 (2003

(a) slow time scale (a) slow time scale
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& -5 mean value -
g damage level 1 damage level 2 short ticks: 50% confidence
) 5 long ticks: 95% confidence _
-] £ 0.04-
£ 500 5
= ]
3 damage level 3 &
g 3
] /\ \ 2 0.02-
o
0 T T
0.00 0.02 . 0.04 0.06 0.00 | | ‘ |
prediction error 1 2 3 4
FIG. 5. Probability density estimations for data at all damage damage level

levels for(a) the slow time scale antb) the fast time scale. ) o
FIG. 6. Mean normalized cross-prediction error values at each

T _— . . . damage level fofa) the slow time scale an(b) the fast time scale.
distributions appear distinguishable, with the possible eXCEpI§:oth 590% and 9(51)’/0 confidence limits arec::wown as indicated.

tion of damage levels 1 and 2 at the slow excitation time

scale. It is interesting to note that the prediction error is o o }

larger for this case. The reason for this concerns the tim&ach distribution; this implies, in the 95% confidence case,
scales of the two different forcing processes. Because th®r example, that 95% of the data in that distribution fall
first case involves the structure being driven at slower velocibetween the confidence limits. Regardless of time scale, it
ties, for a given number of samples, fewer oscillations takéiPpears that at a 50% confidence level, all damage levels are
place leaving a more sparsely or less populated attractor. Féfistinguishable. At 95% confidence, the second and third
the faster process, tHe points will cover more oscillations damage levels have overlapping confidence bands for the
and give a more complete geometric portrait of the attractorSlower excitation. Moreover, the trend is not monotonic, ren-
resulting in a lower prediction error. dering damage magnitude classification more difficult.

In order to quantify the differences between the distribu-
tions, 1D ANOVA was performed considering all six pos-
sible pairwise differencesqE Cg=6). In all six cases, the
intervals constructed by the modified E§2) did not con- A framework for vibration-based SHM using attractor-
tain zero, meaning that all damage levels are distinct frombased methods has been presented and demonstrated effec-
each other. This result was true for both excitation timetively in an experimental context. By using chaos to interro-
scales, although the interval at the slow time scale whemgate the structure, the dimension of the response is kept low,
comparing damage levels 1 and 2 very nearly contained zerallowing for attractor-based classification. The random exci-
Outlier analysis, while not as quantitative, revealed 100%ation commonly favored for vibration-based SHM, on the
outliers between all “damaged” datasets and the correspondsther hand, will always produce infinitat least in a practi-
ing undamaged, base line dataset. This implies that even @l sensg dimension attractors, eliminating this particular
simple online monitoring of outliers would likely detect approach from consideration. Nonlinear cross-prediction er-
changes to the base line very quickly. Figure 6 shows theor is an effective feature for quantifying the level of degra-
progression with damage level of the distribution mean predation to a given structure. The method essentially quantifies
diction error values for both time scales. Confidence limitsthe likelihood that a particular empirical model, taken from
are placed on the data at both 50% and 95% levels. Theghke base line data, describes the damaged data. A poor model
confidence limits are based on the appropriate quantiles fas an indicator that the data have begun to deviate from those

VII. CONCLUSIONS
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produced by “healthy” dynamics, hence damage is identi-bustness as well. Finally, because this method relies on
fied. An effort has been made to incorporate the effects ofteady-state dynamics at relatively slow time scalelsen
ambient variation into the procedure by including multiple compared to structural resonangesnergy input to the sys-
datasets in the analysis. Any method which is to be used ifem is minimal, in contrast to many of the sustained resonant

practice must take into account the distributions of featuregiriving methods used in common structural health monitor-
rather than analyzing one single realization. The nonlineajng practice.

cross-prediction error was shown to be robust under varia-
tion, as both 1D ANOVA and outlier analysis showed rapid
distinction between the damaged and undamaged datasets. In
fact, damage magnitude classification also was possible, es-
pecially at the faster time scale. It is expected that the slower The authors acknowledge the National Research Council
time scale could be equally as effective if the attractor hador financial support to J.M.N. and acknowledge the U.S.
been populated more thoroughly; the lower dimension at thit?Naval Research Laboratory for funding this work under a 6.1
time scale would provide computational advantages and rcAdvanced Research Initiative.
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