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Use of chaotic excitation and attractor property analysis in structural health monitoring
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This work explores the utility of attractor-based approaches in the field of vibration-based structural health
monitoring. The technique utilizes the unique properties of chaotic signals by driving the structure directly with
the output of a chaotic oscillator. Using the Kaplan-Yorke conjecture, the Lyapunov exponents of the driving
signal may be tuned to the dominant eigenvalues of the structure, thus controlling the dimension of the
structural response. Data are collected at various stages of structural degradation and a simple nonlinear model,
constructed from the undamaged data, is used to make predictions for the damaged response data. Prediction
error is then introduced as a ‘‘feature’’ for classifying the magnitude of the damage. Results are presented for
an experimental cantilevered beam instrumented with fiber-optic strain sensors.
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I. INTRODUCTION

The field of structural health monitoring~SHM! is con-
cerned with accurately monitoring the integrity of structur
both civil and military, in an effort to reduce ownersh
costs, improve operational lifetime, and most importan
protect human life. Because the dominant mode of failur
often catastrophic, the associated economic and health c
are typically very high. One of the more common approac
to the problem is vibration-based SHM, a procedure wher
the structure in question is excited and the dynamical
sponse observed for changes in ‘‘features’’ that are indica
of damage. The assumption here is that damage will man
itself as a change in the dynamical properties of the struct
response so that by quantifying these changes, the prac
ner may detect, locate, or even diagnose the type of the d
age. A vast majority of the literature considers features
rived from a modal analysis of the structure, e.g., reson
frequencies, mode shapes, mode curvature, modal dam
flexibility, etc. Good summaries of previously proposed fe
tures, their application, and their effectiveness may be fo
in Refs.@1# and @2#.

Recently, progress has been made by using chaotic e
tation signals and attractor analysis to detect damage
structures@3,4#. This approach is fundamentally new in th
the steady-state dynamics of the structure are conside
rather than the transient dynamic properties associated w
modal analysis. We will show in this work that a chao
wave form may be tailored to yield a structural respon
which is low dimensional, regardless of the number of d
grees of freedom in the structure. The effect of damage i
alter the dynamics of the response, giving rise to differ
response attractors. Any algorithm that can accurately qu
tify these differences in the presence of uncertainty~such as
due to nonstationary environmental fluctuations! becomes a
valid method for detecting structural damage. A variety
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attractor-based metrics exist for the purpose of making qu
titative statements about the underlying dynamical proce
e.g., correlation dimension@5#, Lyapunov spectrum@6#,
false-nearest neighbors@7#, and certain prediction scheme
@8# are widely used.

The approach used here is a variation of the method u
in Ref. @9# for examining nonstationarity in time-series dat
The idea is to use data taken from the undamaged ‘‘pristi
structure to reconstruct reference, or base line, attract
These data are to be compared to data collected from
structure as damage is incurred. By using a simple predic
scheme, points on the ‘‘damaged’’ attractors are forecast
ing the base line data as a model. Higher levels of dam
will alter the structure’s dynamic response, causing th
base line models to lose their ability to make predictio
Prediction error then becomes a good feature for quantify
both the presence and the magnitude of structural degr
tion. The effectiveness of the approach is demonstrated
experimental data taken from a cantilevered beam where
level of damage is known, quantified by varying the clam
ing strength at the fixed end.

II. METHODOLOGY

A. Chaotic interrogation

Traditional vibration analysis involves exciting the stru
ture with broadband random signals. The broadband na
of noise ensures a full modal response, ideal for freque
domain approaches to system identification or feature ext
tion. Chaotic signals also tend to possess broadband
quency spectra; however, unlike noise, chaos is determ
tic. In fact many chaotic systems can be as low as th
dimensional when described as a continuous time proc
This determinism, coupled with the fractal nature of chao
attractors, gives rise to a low-dimensional ‘‘spread’’ of tr
jectories that allow for attractor-based classification. Perio
orbits, for example, adhere to well-defined paths and w
produce one-dimensional attractors, regardless of dam
level. In addition, a chaotic system is defined by a posit
©2003 The American Physical Society09-1
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Lyapunov exponent implying extreme sensitivity to sm
changes in system parameters. The subtlety of damag
duced changes to a structure further motivates this choic
the mechanism of excitation.

The difficulty in applying attractor-based methods to e
perimental systems is usually tied to the dimensionality
the process. High-dimensional (D.4) systems tend to pro
duce poor results when an attractor-based analysis is
due to an inability to sufficiently populate the attractor. T
proposed method takes advantage of the Kaplan-Yorke
jecture in order to produce low-dimensional response t
allowing for the standard tools of nonlinear time-ser
analysis to be successfully employed. The Kaplan-Yo
conjecture@10# relates the Lyapunov exponents~LEs! of a
system to the dimension of that system via

DL5K1

(
m51

K

lm

2lK11
, ~1!

whereK is the number of exponents that may be added
fore the sum becomes negative, thelm are the LEs, andDL
is the Lyapunov dimension. This relationship is important
two specific reasons. First, it implies that by adjusting
LEs the dimensionality of the system’s response may be
fectively controlled. Second, it states thatonly the most
weakly contractingstate space directions play a role in t
dimensionality of the process. All negative exponents gre
in magnitude thanlK11 are effectively filtered out of the
dynamics. The state-space directions associated with t
exponents are contracting too quickly to be seen.

Consider a simple linearN-degree-of-freedom structur
forced with the output of a separate dynamical process g
erned by the functionF.

ż5F~z!

ẋ5Ax~ t !1Bz~ t !. ~2!

The coordinatesx are N vectors that can be any dynam
measurable~strain, displacement, etc.!, depending on how
the constant coefficient matrixA is formed. This matrix con-
tains all of the mass, stiffness, and damping proper
present in the structure. Forcing for the system is provid
by the inputBz(t) where the matrixB selects both the com
ponent ofz(t) to be used for the forcing and the structur
location~s! ~at which coordinatesx) where the forcing is to
be applied. A one-degree-of-freedom version of this sa
system was studied in Ref.@11# by Pecora and Carroll wher
the forcing was taken to be the output of a chaotic oscilla
The goal of that work was to illustrate how controlling th
LEs of a linear time-invariant filter could lead to a respon
with varying dimension via Kaplan-Yorke conjecture. He
we have extended the concept to a multiple-degree
freedom filter, represented here by the structureA.

Returning to Eq.~2!, both the structure and the forcin
will each contain their own sets of LEs so that the compl
spectrum for the filtered chaotic signalx(t) is given by
01620
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C : u51, . . . ,d1

lv
L : v51, . . . ,d2

J ⇒lm
S ,

l1
S.l2

S.•••.l (d11d2)
S , ~3!

where the lu
C are the exponents associated with t

d1-dimensional forcing and thelv
L are the exponents of th

d2-dimensional filter. Regardless of the number of degree
freedom associated with the filter, the fractal dimension
the entire system is controlled by Eq.~1!. It should be noted
that in order for these statements to be true the coup
between the forcing and the structuremust be monodirec-
tional. Any feedback from the structure which affects t
dynamics of the forcing, could result in fundamentally d
ferent dynamics through bifurcation.

B. Tuned chaos

Damage to the system will result in changes to the eig
structure of A. This in turn will alter the structure’s
Lyapunov spectrum, which, for a linear system, consists
the real parts of the eigenvalues ofA. Changing thelv

L may
thus alter the dimension of the filtered signal. Therefore,
tecting changes in dimensionality becomes a valid candid
for detecting any type of damage that serves to alter
eigenvalues of a structure. Two criteria must be met, ho
ever, in order for this approach to work. First, the Lyapun
spectrum of the oscillator must overlap that of the structu
This ensures that changes to the LEs of the structure, i.e
damage, will alter the dimension of the filtered signal. T
degreeof overlap,do , determines the extent to which th
structure’s dynamics are excited or, alternatively, the num
of dimensions the structure is adding to the phase sp
Second, the dominant exponent associated with the oscill
must be minimized for a given degree of overlap in order
maintain the lowest possible dimensionality. Considering
~3!, these criteria become

uld1

C u.uldo

L u

(
m51

do

lm
L .ul1

Cu. (
m51

do21

lm
L . ~4!

The interaction between chaotic and structural LEs fordo
51 is depicted in Fig. 1. If the above criteria are met, a
the forcing is restricted to the output of a continuous tim
process (l2

C50.0), the dimension of the filtered chaotic si
nal will be

DL511do1

l1
C1 (

m51

do21

lm
L

uldo

L u
, do.0. ~5!

The result of an appropriately tuned chaos and structure
tem is therefore a response that is low dimensional, and
whose dynamics will be fundamentally changed by the
currence of damage to the structure. The focus is there
9-2
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FIG. 1. Interaction of LEs for
filtered dynamics: chaotic inpu
Lyapunov spectrum~left!; struc-
tural Lyapunov spectrum
~middle!; combined spectrum
~right!.
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on finding a feature that can accurately quantify differen
in the dynamical attractors produced by the system at var
stages of structural degradation.

III. PREDICTION ERROR AS A FEATURE

In this paper we explore the use of prediction error a
feature in quantifying the level of structural degradatio
Suppose thatNr independent time series (Nr independent
experiments, or runs! are recorded. RecordingNr such re-
sponses allows for the inclusion of ambient variation in
set of data. Such variation is known to occur in practice a
must be accounted for if damage-induced changes are t
distinguished from those due to environmental factors.
will represent this base line set ofNr time series asX
5$x1(n),x2(n), . . . ,xNr

(n)%, where each xi(n),i

51,2, . . . ,Nr , is a vector ofn51, . . . ,N discretely sampled
values of undamaged structural response. Similarly, at s
later time, when the structure is presumed to be dama
relative to the condition when the setX was collected, a new
set of dataY5$y1(n),y2(n), . . . ,yNr

(n)% are collected in

the same way~i.e., Nr independent runs withN discrete time
samples in each time series!. The object of the feature-base
damage assessment is to extract some metric capable o
criminating between the base line~undamaged! setX and any
future ~damaged! datasetY. Here, the base line data setX is
used to empirically generate an attractor-based model of
pristine structure’s dynamics. These models are then use
make predictions for any subsequent damaged datasetY. The
resultingnonlinear cross-prediction errorbecomes an excel
lent candidate for a feature. As the structural dynamics
altered, the expected value of the cross-prediction error
increase. The strength of the approach is that it directly
dresses the question of interest:‘‘Has the dynamical re-
sponse of the structure been altered due to damage?’’

The algorithm used here is adopted from Schreiber@9#,
where it was used to detect nonstationarity in time-se
data. A simple attractor-based prediction scheme is use
the undamaged data to forecast the values of the dam
data some number of time stepss into the future. Using the
familiar delay coordinate approach@12#, each of theNr base
line time series inX may be used to construct a correspon
ing base lineattractor

xi~n!5@xi~n!,xi~n1T!, . . . ,xi„n1@M21#T…#,

i 51, . . . ,Nr ~6!
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with embedding dimensionM and time delayT, where we
have adopted the boldface now to indicate thei th attractor
rather than thei th time series in the datasetX. Similarly, any
subsequent~damaged! datasetY will yield Nr attractors, with
each one denotedyj (n). The method proceeds by selectin
the i th base line attractorxi(n) from X and the j th ‘‘test’’
attractoryj (n) from Y. Given a randomly selected fiducia
trajectory~point! at time indexf on yj (n), or yj ( f ), the al-
gorithm selects a corresponding set or ‘‘neighborhood’’ of
the points on the base line attractorxi(n) that are within
some radiuse of the randomly selected fiducial point. Th
set may be explicitly defined as

Ue
xi
„yj~ f !)5xi~p!:uuxi~p!2yj~ f !uu,e. ~7!

The time indexp associated withxi(n) is completely arbi-
trary, and it does not necessarily have any correlation to
time index f, since this neighborhood is constructed pure
from geometric considerations. The idea is to describe
evolution ofUe

xi
„yj ( f )… and to use this description as a pr

dictor for how the data should evolve in time. The predict
value foryj ( f ) at s time steps into the future, denotedŷj ( f
1s), then becomes

ŷj~ f 1s!5
1

uUe
xi
„yj~ f !…u

(
xi (p)PU

e

xi
„yj ( f )…

xi~p1s!, ~8!

where the quantityuUe
xi
„yj ( f )…u simply denotes the numbe

of points in the neighborhood. In this formulation, then, t
predicted value is simply the average of predicted values
the neighborhood. In this sense the base line attractors
used as ‘‘look-up’’ tables that contain the various patte
present in the data. The working hypothesis is that th
tables will lose their ability to serve as an accurate datab
as the dynamics is altered by damage. The prediction hor
s will depend on the rate at which the data are acquired
the specific application. For health monitoring purposes,
suming reasonably sampled data,s51 will suffice. While
more complicated prediction schemes exist, this is among
simplest models one can use to quantify the evolution of
dynamics. Since we only seek to distinguish one attrac
from another, the quality of predictions is of diminished im
portance and the simplest, most computationally effici
scheme is considered optimal. Variations of this algorith
have been used for prediction and data cleansing@8,13#.
9-3
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Once the predictions have been made, the average pr
tion error between thei th base line attractor and thej th test
attractor at one time step in the future may be defined b

g i , j5
1

N (
f 51

N

@ ŷj~ f 11!2yj~ f 11!#2, ~9!

where the average is taken over allN points on the attractor
In practice, such a large summation is often time consum
and a good estimate of the average may be obtained
evaluating Eq.~9! over some randomly selected subset ofN.
This error quantity is then normalized by the variance~de-
noteds i

2) of the i th base line attractor to yield thenormal-
ized average cross-prediction error

ĝ i , j5
g i j

s i
2

. ~10!

This computation is performed for each of the base linei
51 . . .Nr) and damaged (j 51, . . . ,Nr) attractors for alli
, j such that the total feature set hasNm5Nr(Nr21)/2
members. Excluding duplicate pairings, e.g.,ĝ1,2ĝ2,1, was
done so that each of the resultingNm members ofĝ i , j may
be treated as independent random variables. Similar ind
e.g., ĝ1,1,ĝ2,2 are also excluded from consideration. T
variation the method seeks to capture is occurring from
to run so that adding similar pairs serves no purpose o
than to potentially bias the data. Finally, theauto prediction
error is computed for the base line attractor by replac
yj ( f ) with xi( f ) in Eq. ~7!. The resulting setĝ i , j

A ~whereA
denotes ‘‘auto’’! gives some idea of the prediction error o
would expect to find in the instance when the dynamics
not changing. This entire process is then repeated for
subsequent data setY obtained from the structure over time
If the practitioner collectsNd datasets over time, then eac
ĝ i , j dataset, now denotedĝ i , j

k ,k51, . . . ,Nd , describes the
error generated by using the base line data to predict
subsequent datasets should evolve. It is expected tha
damage-induced dynamics of the structure change, this e
will grow to reflect the change.

IV. STATISTICAL CONSIDERATIONS

Although the prediction error features presented above
computed in a deterministic manner, there exist sev
sources of variability which add elements of stochastic
havior to any real data. Measurement noise, unaccou
variables, environmental fluctuation~nonstationarity!, and
other sources cause the data to populatedistributionsrather
than reflect exact repeatability. Thus, the damage diagn
problem is transformed into distinguishing among vario
distributions of data regarding their proper classification
coming from a damaged structure or not. The practitio
seeks to make a confidence-based, quantitative engine
judgment in this capacity so that proper corrective act
may be taken.

A useful procedure for comparing datasets is the anal
of variance~ANOVA !. In an ANOVA procedure, the param
01620
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eters of interest are thetreatments, which refers to the quan
tity ~or quantities! assumed to be changing between datas
and theresponses, which are the measured or computed da
to be analyzed. In this work, the driving influence of th
difference among datasets is assumed to be due to dam
progress in the structure, and thus only a single-factor tr
ment is considered~1D ANOVA!. Different amounts of dam-
age are known as treatmentlevels. If the data population
mean of thekth treatment is denotedmk , the following null
hypothesis may be established:

H0 :mk5mk11 , ~11!

wherek51, . . . ,Nd , andNd is the number of different dam
age levels ~treatments! being considered. The implied
complementary alternative hypothesis is thus that in at le
one pairwise comparison, the means differ. Acceptance ofH0
indicates that no distinguishable difference among data
may be inferred, and thus no damage to the structure
occurred. Specific details regarding how a 1D ANOVA pr
cedure is completed may be found in any basic statist
methods text, e.g., Ref.@14#.

Traditional ANOVA considers single inferences for ea
m j by establishing confidence intervals. If the parent d
populations are assumed to be normally distributed, it m
be shown that the 100(12a)% confidence interval about th
difference between two meansm j andmk may be given by

m j2mk5~X̄j2X̄k!6ta/2AEMSS 1

nj
1

1

nk
D , ~12!

whereX̄j andX̄k are the means of the two measured datas
EMS is the global mean-squared error as obtained from
ANOVA procedure,nj andnk are the number of data obse
vations in each set, andta/2 is the student-t test statistic at
confidence levela/2.

The interval constructed in Eq.~12! is deficient in one key
way: each pairwise inference applies individually, and t
method cannot be used to draw a family of inferences am
several datasets. The deficiency may be alleviated by ei
constructing wider intervals, meaning less precise estima
or reducing the confidence level. One popular method
properly estimating pairwise differences is the Bonferro
method. The method requires that the number of pairw
comparisons to be made be specifieda priori. The Bonfer-
roni interval estimates are still given by Eq.~12!, but the
student-t test statistic is modified fromta/2→ta/2q , whereq
is the number of pairwise estimates to be considered. ForNd

treatments ~damage levels!, there are C2
Nd5Nd!/2!/(Nd

22)! total pairs that may be considered. One advantage
the Bonferroni method, however, is that not all these pa
need to be considered. The final decision whether to ac
or rejectH0 depends on whether the intervals constructed
the modified Eq.~12! contain zero or not; intervals that con
tain zero indicate an acceptance ofH0, and intervals that do
not contain zero indicate rejection ofH0, i.e., the two means
are significantly different.

Two important assumptions are inherent in using
ANOVA procedure as detailed above. First, it must be kno
9-4
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in some sense how many levels of data~i.e., damage levels!
are contained within all the datasets. This may be though
as supervised learning, where a controlled damage study
being performed such that known discrete levels of dam
~even if they are not quantifiable as such! are observed. Sec
ond, the confidence intervals constructed by the modified
~12! rely upon the assumption that the parent data distri
tions from which the measured data are sampled are no
~Gaussian!. This second assumption is usually acceptab
provided that the data are not significantly skewed or mu
modal. Even if the parent distributions are skewed or mu
modal, recourse may be made to the central limit theorem
applying some sort of subsampling, resampling, or bootst
ping technique@15#. The general procedure in these tec
niques is to take large numbers of randomly sampled sub
of the collected data, take the subset mean, and use the
lection of resampled means as the ‘‘new’’ dataset. This p
cedure was implemented on the data taken in this work,
it will be shown later that strongly Gaussian distributions
data resulted.

The first assumption poses a more difficult challenge. I
practical situation, true supervised learning is quite rare
observations of data from many ‘‘known’’ damage levels a
usually unavailable. Without this information, a proper qua
titative ANOVA is impossible. One useful procedure in th
instance is the use ofstatistical process control, sometimes
known asnoveltyor outlier detection@16–18#. Here, data are
collected from some base line state of the system, confide
limits are determined by standard mean-based hypoth
testing, and any future data are compared to these confid
limits. Data that fall within the confidence limits are assum
to come from the same population as the base line d
while data outside the limits, called ‘‘outliers,’’ are used
an indicator of ‘‘other’’ data. As damage occurs in the stru
ture, it is reasonable to postulate, then, that the numbe
outliers would increase. This procedure is illustrated in F
2. Base line data are obtained, and a certain confidenc
assigned to the resulting distribution, as in panel~a!. The raw
data are shown in panel~b! with the upper and lower confi
dence limits drawn in. Some of the data fall outside the li
its, since it is never possible to obtain all the real par
population data. With proper determination of the confiden
limits from usual hypothesis testing, the outlier fractio
should equal the balance of the confidence limit from 100
in other words, for a confidence limit of 95%, the base li
data should have about 5% of the data appearing as an
lier. Then, as new data are obtained, they are compared t
base line confidence limits, and outliers are counted.
dataset in Fig. 2~c!, for example, shows a significant increa
in the number of outliers observed. The outlier count co
be trended over time to obtain a semiquantitative measur
degradation.

V. EXPERIMENT SETUP

The system under study is a cantilevered aluminum be
clamped at the fixed end by four clamping bolts thread
into an aluminum clamping stage. The beam itself had
length of 5.00031021 m, a width of 5.00031022 m, and a
01620
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thickness of t53.17531023 m. Springs were placed be
tween the clamping stage and the clamping bolts so that
clamping strength could be varied. This provided a co
trolled mechanism by which the structure may be ‘‘da
aged.’’ Seven fiber-optic strain sensors~based on fiber Bragg
gratings! were evenly spaced along the central axis of
beam@19# and an accelerometer was attached to the forc
mechanism in order to record the excitation. The entire se
is shown in Fig. 3. The shaker is a M.B. Dynamics ‘‘Mod
50’’ attached to the base by a shaft fixed in place by
screws. It was determined experimentally that the first t
LEs of the beam were

l1'27,

l2'211. ~13!

These estimates were obtained by exciting the structure
white noise, measuring the response, and implementin
version of the eigensystem realization algorithm~ERA! @20#
in order to estimate the structure’s state matrixA. The eigen-
values of this matrix were extracted and the real part w
retained as the structure’s Lyapunov exponents. Due to
limits of the excitation mechanism and the uncertainty as
ciated with theERA algorithm, the quantities~13! should be

FIG. 2. Statistical process control:~a! probability density esti-
mation and typical confidence limits for base line data;~b! data
reflecting the distribution in~a!; ~c! new data showing an increase
outlier count possibly indicative of damage.
9-5
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regarded as rough approximations. Different forms of ex
tation and different algorithms may produce varying resu
This is a consequence of some well-known difficulties
obtaining reliable estimates of negative LEs@21#. However,
since the method only requires approximate values in o
to be effective, this poses no limitation.

Excitation was chosen as the first state variable,z1 of the
chaotic Lorenz oscillator,

e ż1516~z22z1!,

e ż2540z12z22z1z3 .

e ż3524z31z1z2 , ~14!

ẋ5Ax1Bz, ~15!

where the tuning parametere is used to speed up or slow
down the oscillator, depending on the LEs of the structu
The matrixB of Eq. ~2! incorporatesż1 ,z1 due to the fact
that the excitation is applied as base motion~as opposed to a
point force!. One obvious difference between the model~2!
and the experiment is the number of coordinates require
describe the structure. Numerically such problems are
cretized to some finite, usually small, number of degrees
freedom, while the actual beam contains an infinite num
of degrees of freedom. In a practical sense this does not
a problem as the time scales~or alternatively, LEs! become
very small~very negative! for only a few state-space coord
nates of the structure. The Kaplan-Yorke conjecture is es

FIG. 3. Experimental setup.
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tially providing a means by which the higher-order structu
coordinates~dimensions! are filtered out of the dynamics.

For this structure, two different forcing scenarios we
considered. For the first, thee were each set to 0.8, giving
complete spectrum oflm

1 5(1.10,0.00,217.90) so that only
one LE of the structure was overlapped by those of the d
ing signal (do51). The dimension of the response in th
case is theorized to beDL'2.2. In the second case the d
gree of overlap stayed the same, but the oscillator was s
up by requiring that each of thee51.8 yielding a spectrum
of lm

2 5(2.47,0.00,240.27) and a dimension ofDL'2.4.
For each of these cases, the driving signals were gener
using a fourth-order Runge-Kutta algorithm. LabVIEW da
acquisition software was then used to convert the data file
the voltage that was output to the shaker controller. A sam
of the driving wave form is shown in Fig. 4. Damage w
simulated on the beam by loosening the compression on
springs holding the clamp. Under a fully clamped~undam-
aged! condition, all four springs were compressed to 1.
cm, and three damage levels were produced by relaxing
springs to 1.40 cm~damage level 1!, 1.95 cm~damage level
2!, and 2.50 cm~damage level 3!. Displacements were pre
cision controlled with a micrometer. As the springs we
lengthened, the elastic force imparted on the clamp
creased, simulating the relaxation of a bolted connection
to fastener degradation.

VI. RESULTS

This experiment yieldedNr512 runs for eachNd54 ~one
undamaged and three damaged! scenarios with each run con
sisting ofN545 000 points, sampled at 2 kHz. Final valu
for the average prediction error were obtained by evalua
Eq. ~9! over 5 000 randomly selected trajectoriesf. The sets
of prediction error therefore consist ofNm566 values which
were then resampled with the means of 20-element rand
subsets to generate a 10 000-sample data set. Probability
sity functions of the resampled data using a kernel den
estimation technique@22# with a Gaussian kernel are show
in Fig. 5 for both the slow~a! and fast~b! forcing cases. It is
clear from the figure that increased levels of damage lea
a different set of dynamics and hence a higher predict
error. The distributions at all damage levels in both excitat
time scales appear strongly Gaussian. To the naked eye

FIG. 4. Driving Lorenz wave form.
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USE OF CHAOTIC EXCITATION AND ATTRACTOR . . . PHYSICAL REVIEW E 67, 016209 ~2003!
distributions appear distinguishable, with the possible exc
tion of damage levels 1 and 2 at the slow excitation ti
scale. It is interesting to note that the prediction error
larger for this case. The reason for this concerns the t
scales of the two different forcing processes. Because
first case involves the structure being driven at slower velo
ties, for a given number of samples, fewer oscillations ta
place leaving a more sparsely or less populated attractor.
the faster process, theN points will cover more oscillations
and give a more complete geometric portrait of the attrac
resulting in a lower prediction error.

In order to quantify the differences between the distrib
tions, 1D ANOVA was performed considering all six po
sible pairwise differences (q5C2

656). In all six cases, the
intervals constructed by the modified Eq.~12! did not con-
tain zero, meaning that all damage levels are distinct fr
each other. This result was true for both excitation tim
scales, although the interval at the slow time scale w
comparing damage levels 1 and 2 very nearly contained z
Outlier analysis, while not as quantitative, revealed 10
outliers between all ‘‘damaged’’ datasets and the correspo
ing undamaged, base line dataset. This implies that ev
simple online monitoring of outliers would likely detec
changes to the base line very quickly. Figure 6 shows
progression with damage level of the distribution mean p
diction error values for both time scales. Confidence lim
are placed on the data at both 50% and 95% levels. Th
confidence limits are based on the appropriate quantiles

FIG. 5. Probability density estimations for data at all dama
levels for ~a! the slow time scale and~b! the fast time scale.
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each distribution; this implies, in the 95% confidence ca
for example, that 95% of the data in that distribution fa
between the confidence limits. Regardless of time scale
appears that at a 50% confidence level, all damage levels
distinguishable. At 95% confidence, the second and th
damage levels have overlapping confidence bands for
slower excitation. Moreover, the trend is not monotonic, re
dering damage magnitude classification more difficult.

VII. CONCLUSIONS

A framework for vibration-based SHM using attracto
based methods has been presented and demonstrated
tively in an experimental context. By using chaos to inter
gate the structure, the dimension of the response is kept
allowing for attractor-based classification. The random ex
tation commonly favored for vibration-based SHM, on t
other hand, will always produce infinite~at least in a practi-
cal sense! dimension attractors, eliminating this particul
approach from consideration. Nonlinear cross-prediction
ror is an effective feature for quantifying the level of degr
dation to a given structure. The method essentially quanti
the likelihood that a particular empirical model, taken fro
the base line data, describes the damaged data. A poor m
is an indicator that the data have begun to deviate from th

e

FIG. 6. Mean normalized cross-prediction error values at e
damage level for~a! the slow time scale and~b! the fast time scale.
Both 50% and 95% confidence limits are shown as indicated.
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produced by ‘‘healthy’’ dynamics, hence damage is iden
fied. An effort has been made to incorporate the effects
ambient variation into the procedure by including multip
datasets in the analysis. Any method which is to be use
practice must take into account the distributions of featu
rather than analyzing one single realization. The nonlin
cross-prediction error was shown to be robust under va
tion, as both 1D ANOVA and outlier analysis showed rap
distinction between the damaged and undamaged datase
fact, damage magnitude classification also was possible
pecially at the faster time scale. It is expected that the slo
time scale could be equally as effective if the attractor h
been populated more thoroughly; the lower dimension at
time scale would provide computational advantages and
ig.

r.

-

s

ic

01620
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bustness as well. Finally, because this method relies
steady-state dynamics at relatively slow time scales~when
compared to structural resonances!, energy input to the sys
tem is minimal, in contrast to many of the sustained reson
driving methods used in common structural health monit
ing practice.
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